Convergence of ray sequences of Padé approximants for 2 F 1 ( a , 1 ; c ; z ) , for c > a > 0 .

نویسنده

  • K. Jordaan
چکیده

The Padé table of 2F1(a, 1; c; z) is normal for c > a > 0 (cf. [4]). For m ≥ n−1 and c / ∈ Z − , the denominator polynomial Qmn(z) in the [m/n] Padé approximant Pmn(z)/Qmn(z) for 2F1(a, 1; c; z) and the remainder term Qmn(z)2F1(a, 1; c; z)−Pmn(z) were explicitly evaluated by Padé (cf. [2], [6] or [9]). We show that for c > a > 0 and m ≥ n−1, the poles of Pmn(z)/Qmn(z) lie on the cut (1,∞). We deduce that the sequence of approximants Pmn(z)/Qmn(z) converges to 2F1(a, 1; c; z) as m → ∞, n/m → ρ with 0 < ρ ≤ 1, uniformly on compact subsets of the unit disc |z| < 1 for c > a > 0. AMS MOS Classification: 41A21, 30E15

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

How well does the Hermite-Padé approximation smooth the Gibbs phenomenon?

In order to reduce the Gibbs phenomenon exhibited by the partial Fourier sums of a periodic function f , defined on [−π, π], discontinuous at 0, Driscoll and Fornberg considered so-called singular Fourier-Padé approximants constructed from the Hermite-Padé approximants of the system of functions (1, g1(z), g2(z)), where g1(z) = log(1 − z) and g2(z) is analytic, such that Re (g2(e)) = f(t). Conv...

متن کامل

Weighted Maximum over Minimum Modulus of Polynomials, Applied to Ray Sequences of Padé Approximants

Let a 0; " > 0. We use potential theory to obtain a sharp lower bound for the linear Lebesgue measure of the set ( r 2 [0; 1] : r maxjtj=1 jP (t)j minjtj=r jP (t)j " ) : Here P is an arbitrary polynomial of degree n. We then apply this to diagonal and ray Padé sequences for functions analytic (or meromorphic) in the unit ball. For example, we show that the diagonal f[n=n]gn=1 sequence provides ...

متن کامل

Convergence of Diagonal Padé Approximants for a Class of Definitizable Functions

Convergence of diagonal Padé approximants is studied for a class of functions which admit the integral representation F(λ) = r1(λ) R 1 −1 tdσ(t) t−λ + r2(λ), where σ is a finite nonnegative measure on [−1, 1], r1, r2 are real rational functions bounded at ∞, and r1 is nonnegative for real λ. Sufficient conditions for the convergence of a subsequence of diagonal Padé approximants of F on R \ [−1...

متن کامل

Exploring multivariate Padé approximants for multiple hypergeometric series

We investigate the approximation of some hypergeometric functions of two variables, namely the Appell functions Fi, i = 1, . . . , 4, by multivariate Padé approximants. Section 1 reviews the results that exist for the projection of the Fi onto x = 0 or y = 0, namely, the Gauss function 2F1(a, b; c; z), since a great deal is known about Padé approximants for this hypergeometric series. Section 2...

متن کامل

Some Polynomial Problems Arising from Padé Approximation

In the convergence theory of Padé approximation, one needs to estimate the size of a set on which a suitably normalized polynomial q is small. For example, one needs to estimate the size of the set of r 2 [0; 1] for which max jtj=1 jq (t)j =min jtj=r jq (t)j is not “too large”. We discuss some old and new problems of this type, and the methods used to solve them. 1. Introduction Let f be a func...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009